If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2-3x+4=0
a = 0.5; b = -3; c = +4;
Δ = b2-4ac
Δ = -32-4·0.5·4
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-1}{2*0.5}=\frac{2}{1} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+1}{2*0.5}=\frac{4}{1} =4 $
| 220=y3 | | 3x-4+2x=11 | | 3x-40=x+20+x | | -43=-13+x/3 | | 45x-2=33x+7 | | 4x+3=-4x-2.66 | | X-3+2-2x=3 | | (1/2x)-(3x+9/2x^2)=(2x+6/x^2) | | 3n+25=34 | | 3n+25=35 | | 3w–19=7+5w | | 9x+2.9=3x=5.3 | | 0.2(100–x)+0.05x=0.1(100) | | X4-100x2+2304=0 | | 9x-4-8+7x=10 | | 2/3x=6/x+8 | | 2x2+(x-8)(x+8)-3(1-x2)=0 | | 2x+x-x-x=25 | | 50+2x=76 | | 6x=25(6x+12) | | D^2=8-4t | | 7+3y=63 | | V=(8+4)t | | 3(1-r)+5r=2(r+1 | | x+(5x-18)+90=10 | | x=41.8=52.7 | | V=8+4t | | x-45=450 | | (x+2)^2+x^2=10 | | 350=x+73 | | 8x-7+19-3x=12-6x+1+11x | | 45=-16t^2+96t+t |